Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Diminishing Arctic sea ice has led to enhanced evaporation from the Arctic marginal seas (AMS), which is expected to alter precipitation over land. In this work, AMS evaporation is numerically tracked to quantify its contribution to cold-season (October–March) precipitation over land in the Northern Hemisphere during 1980–2021. Results show a significant 32% increase in AMS moisture contribution to land precipitation, corresponding to a 16% increase per million square km loss of sea ice area. Especially over the high-latitude land, despite the fractional contribution of AMS to precipitation being relatively low (8%), the augmented AMS evaporation contributed disproportionately (42%) to the observed upward trend in precipitation. Notably, northern East Siberia exhibited a substantial rise in both the amount and fraction of extreme snowfall sourced from the AMS. Our findings underscore the importance of the progressively ice-free Arctic as an important contributor to the escalating levels of cold-season precipitation and snowfall over northern high-latitude land.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Mid-latitude Northern Hemisphere extreme cold events continue to occur despite overall winter warming trends. These events have been linked to weakened stratospheric polar vortex (SPV) states. In this study, we analyze both the upper and lower polar stratosphere for links to extreme winter cold and snow in the continental US, finding two SPV variations of interest. The first features an upper-level vortex displaced toward western Canada and linked to northwestern US severe winter weather. The second features a weakened upper-level vortex displaced toward the North Atlantic and linked to central-eastern US severe winter weather. Both variations feature lower-level stretched vortices and stratospheric wave reflection. Since 2015, a northwestward shift in severe winter weather across the US is concurrent with an increase in the frequency of the westward-focused variation relative to the eastward-focused variation and a shift to more negative phases of the El Niño–Southern Oscillation.more » « lessFree, publicly-accessible full text available July 11, 2026
-
Abstract The term “weather whiplash” was recently coined to describe abrupt swings in weather conditions from one extreme to another, such as from a prolonged, frigid cold spell to anomalous warmth or from drought to heavy precipitation. These events are often highly disruptive to agriculture, ecosystems, and daily activities. In this study, we propose and demonstrate a novel metric to identify weather whiplash events (WWEs) and track their frequency over time. We define a WWE as a transition from one persistent continental‐scale circulation regime to another distinctly different pattern, as determined using an objective pattern clustering analysis called self‐organizing maps. We focus on the domain spanning North America and the eastern N. Pacific Ocean. A matrix of representative atmospheric patterns in 500‐hPa geopotential height anomalies is created from 72 years of daily fields. We analyze the occurrence of WWEs originating with long‐duration events (LDEs) (defined as lasting four or more days) in each pattern, as well as the associated extremes in temperature and precipitation. A WWE is detected when the pattern 2 days following a LDE is substantially different, measured using internal matrix distances and thresholds. Changes in WWE frequency are assessed objectively based on reanalysis and historical climate model simulations, and for the future using climate model projections. Temporal changes in the future under representative concentration pathway 8.5 forcing are more robust than those in recent decades. We find consistent increases in WWEs originating in patterns with an anomalously warm Arctic and decreases in cold‐Arctic patterns.more » « less
An official website of the United States government
